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Abstract Halotolerant microorganisms able to live in

saline environments offer a multitude of actual or potential

applications in various fields of biotechnology. This is why

some strains of Halobacteria from an Algerian culture

collection were screened for biosurfactant production in a

standard medium using the qualitative drop-collapse test

and emulsification activity assay. Five of the Halobacteria

strains reduced the growth medium surface tension below

40 mN m-1, and two of them exhibited high emulsion-

stabilizing capacity. Diesel oil-in-water emulsions were

stabilized over a broad range of conditions, from pH 2 to

11, with up to 35% sodium chloride or up to 25% ethanol

in the aqueous phase. Emulsions were stable to three cycles

of freezing and thawing. The components of the biosur-

factant were determined; it contained sugar, protein and

lipid. The two Halobacteria strains with enhanced biosur-

factant producers, designated strain A21 and strain D21,

were selected to identify by phenotypic, biochemical

characteristics and by partial 16S rRNA gene sequencing.

The strains have Mg2?, and salt growth requirements are

always above 15% (w/v) salts with an optimal concentra-

tion of 15–25%. Analyses of partial 16S rRNA gene

sequences of the two strains suggested that they were

halophiles belonging to genera of the family Halobacteri-

aceae, Halovivax (strain A21) and Haloarcula (strain D21).

To our knowledge, this is the first report of biosurfactant

production at such a high salt concentration.

Keywords Halobacteria � Screening � Biosurfactant �
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Introduction

Biosurfactants are a diverse group of surface-active

agents produced by many living organisms [6, 43]. These

amphiphilic compounds contain a hydrophobic and a

hydrophilic moiety, and have the ability to reduce

interfacial tension between different fluid phases. Their

uses and potential commercial applications have been

reported in several fields, including surfactant-assisted

flooding for enhanced oil recovery in the oil industry,

emulsifiers in the food industry and moisturizers in the

cosmetic industry [7, 13, 14, 22]. Biosurfactants are

known to occur in a variety of chemical structures, such

as glycolipids, lipopeptides and lipoproteins, fatty acids,

neutral lipids, phospholipids, and polymeric and partic-

ulate structures [13].

The search for biosurfactants in extremophiles seems to

be particularly promising since the biosurfactants of these

organisms have particular adaptations to increase stability

in adverse environments that can potentially increase their

stability in the harsh environments in which they are to be

applied in biotechnology [27, 53]. Some microorganisms
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can survive and grow over a wide range of salt concen-

trations. In aquatic environments the conditions range from

fresh water (containing less than 0.05% w/v dissolved

salts), through sea water with total salinities of 3.2–3.8%

(w/v) to saturated salt solutions up to 30% (w/v) and above

[11, 40].

There are very few reports on biosurfactant producers in

hypersaline environments [12, 36]. Halophiles, which have

a unique lipid composition (phytanylglycerol), may have

an important role to play as surface-active agents. The

archae bacterial ether-linked phytanyl membrane lipid of

the extremely halophilic bacteria has been shown to have

surfactant properties [52]. Yakimov et al. [60] reported the

production of biosurfactant by a halotolerant Bacillus

species and its potential in enhanced oil recovery; Bacillus

licheniformis strain BAS 50 was able to grow and produce

a lipopeptide surfactant when cultured on a variety of

substrates at salinities up to 13% NaCl. The production of

bioemulsifiers from Methanobacterium thermoautotrophi-

cum has been reported [56]. These bioemulsifiers were

active over a wide range of pH (5–10) and at very high salt

concentrations (up to 200 g l-1). Recently, interest in the

mass cultivation of microorganisms from hypersaline

environments has grown considerably, because this

represents an innovative low technology approach to bio-

technological exploitation [45, 57]. In a screening program

to obtain a biosurfactant producer, we have isolated obli-

gately halophilic microorganisms from a previously

unexplored site in Algeria. Hypersaline environments

where salinities exceed 1.5 M are usually dominated by

prokaryotes. Two main groups are to be found: the mod-

erately halophilic bacteria are more abundant at

intermediate salinities (1.5–2.5 M), whereas the halophilic

Archaea (the halobacteria) dominate at salinities greater

than 2.5 M, often imparting spectacular red pigmentation

to the environment because of high levels of carotenoids

[29]. Representatives of the majority of archaeal genera are

characteristic of neutral saline environments (Halobacte-

rium, Halorubrum, Haloarcula, Haloferax, Halococcus,

Halobaculum and Natrialba spp) [29, 37, 38, 42, 46, 50],

whereas alkaline saline environments harbor halo-

alkaliphilic halobacteria, such as Natronomonas and

Natronobacterium spp [38].

The application of molecular and biochemical techniques

has indicated that specific successions of halobacteria occur

in hypersaline waters as the waters become concentrated

[49]. Many neutral hypersaline environments at the satura-

tion point harbor climax populations of halobacteria usually

belonging to the genera Halobacterium, Haloarcula and

Halorubrum [49]. Representatives of other genera are much

less common [30, 54], although detailed characterization at

the species level is seldom carried out. In this article we

report the characterization of five halobacterial isolates from

a sebkha near Ain Salah in Algeria that were able to produce

biosurfactants, whose production and partial characteriza-

tion are described.

Materials and methods

Source of organisms, media and growth conditions

Halobacteria were enriched from 50 samples collected at

1-m intervals in the ponds located close to Ain Salah in

Algeria. The bacterial isolates were routinely cultured in a

standard medium containing (per liter) 125 g of NaCl, 160 g

of MgCl2�6HO2, 5.0 g of K2SO4, 0.1 g of CaCl2�2H2O, 1.0 g

of yeast extract (Difco), 1.0 g of casamino acids (Difco) and

2.0 g of soluble starch (BDH) [50]. The pH of the medium

was adjusted to pH 7.0 with NaOH. This medium was

modified with respect to salt concentrations and nutrients as

described below. In most experiments, cells were grown in a

horizontal shaking water bath (200 strokes per min) at 40�C

in 100-ml Erlenmeyer flasks containing 50 ml of medium.

To prepare agar plates, the media were solidified with 20 g of

agar per liter. The media were sterilized by autoclaving. For

further studies, the growth media was modified; it contained

diesel oil (5% v/v) as the sole carbon source. Diesel used in

the experiments was a standard diesel fuel, without additives,

obtained directly from Naftal Oil Refinery in Algiers. The

cultures were purified by repeatedly streaking them on solid

medium. Typically, the isolates grew well after 7 days in the

standard medium at 40�C, pH 7.0 with 3.5 M NaCl.

Morphological, biochemical and physiological

characterization

Gram staining was performed by using acetic acid-fixed

samples as described by Dussault [23]. Tests for catalase

and oxidase activities, starch, gelatine, casein and Tween

80 hydrolysis, formation of indole from tryptophan and

nitrate reduction were performed by using standard

procedures [28]. Growth response to NaCl was examined

in liquid standard medium using serial NaCl concentra-

tions ranging from 50 to 350 g l-1 and to pH by testing

growth at pH 5–10. The growth response to temperature

was examined by testing growth in liquid medium up to

60�C. The requirement for Mg2? for growth was tested

qualitatively by growing the strains in standard liquid

medium with and without MgSO4�7H2O. The utilization

of sugars (glucose, fructose, galactose, arabinose, raffi-

nose, xylose, cellobiose, sucrose and rhamnose) and the

acid production from these compounds were determined

in standard medium modified as follows: starch was

omitted, and the yeast extract and casamino acids

concentrations were reduced to 0.25 g l-1 each or yeast
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extract and casamino acids were omitted, as described

below. In the latter case, the media were amended with 0.1 g

of NH4Cl per liter and 0.01 g of KH2PO4 per liter [50]. Each

potential carbon source was added to a final concentration of

5 g l-1 from a concentrated sterile solution. Growth was

monitored by determining the optical density of each culture

at 600 nm, and the pH of each culture was compared with the

pH of a control culture. A decrease in the pH to a value less

than 6.0 was considered evidence of acid production. Starch

hydrolysis was tested by flooding colonies grown on agar

plates containing the standard growth medium with an iodine

solution. Susceptibility to antibiotic penicillin G (10 U) was

determined in liquid medium.

DNA extraction, polymerase chain reaction

and sequencing 16S ribosomal DNA

Bacterial strains designated as A21 and D21 were selected

for molecular identification. DNA was extracted from the

polycarbonate filters as described by Minz et al. [47], then

the DNA was electrophoresed for 30 min at 100 V on 1%

TAE agarose gel, excised from the gel and purified with a

jet sorb gel extraction kit (Genomic DNA purification

system-PROM, EGA). Purified DNA from the various

strains was amplified using specific 16S rRNA archaeal

primers, (21f 50-TTCCGGTTGATCCYGCCGGA-30) and

(958r 50-YCCGGCGTTGAMTCCAATT-30) [20]. Each

50 ll reaction mixture contained 5 ll of 10 9 PCR buffer,

5 ll of deoxynucleoside-triphosphate mix (2.5 nM each),

2.5 ll of bovine serum albumin, 0.5 ll of 21f primer

(50 lM), 0.5 ll of 958r primer (50 lM), 0.5 ll of Taq

polymerase (TaKaRa, Otsushiga, Japan), 1 ll of template

DNA and RNase/DNase-free water to a final volume of

50 ll. PCR was performed in 50-ll glass capillaries using a

Perkin-Elmer 480 thermal cycler. The following PCR

program was used: 94�C for 30 s, followed by 30 cycles of

94�C for 15 s, 55�C for 20 s and 72�C for 45 s, followed

by 72�C for 30 s. Phylogenetic analysis was performed

using the software package BioNumerics (Applied Maths,

Belgium) after including the sequence as received in an

alignment of small ribosomal subunit sequences collected

from the international nucleotide sequence library EMBL.

This alignment was pairwise calculated using an open gap

penalty of 100% and a unit gap penalty of 0%. Similarity

matrix was created by homology calculation with a gap

penalty of 0% and after discarding unknown bases. A

resulting tree was constructed.

Screening for biosurfactant-producing strains

The most important surface-active properties evaluated in

screening microorganisms with potential industrial appli-

cation are surface tension (ST) reduction, the emulsion-

forming and -stabilizing capacity. The criterion used for

selecting biosurfactant producers is the ability to reduce the

ST below 40 mN m-1 [9, 16], whereas a criterion cited for

emulsion-stabilizing capacity is the ability to maintain at

least 50% of the original emulsion volume 24 h after for-

mation [59]. Strains were cultivated on the standard

medium, and screening of biosurfactant-producing colonies

was performed using the qualitative drop-collapse test

described by Jain et al. [35] after being modified by Bodour

and Maier [9]. Motor oil, corn oil and olive oil also were

evaluated for use in this test. Two microliters of oil was

applied to the well regions delimited on the covers of 96-

well microplates (Biolog, Hayward, CA) and left to

equilibrate for 24 h. Five microliters of the 7th day strain

cultures was transferred to the oil-coated well regions after

centrifugation at 12,000 9 g for 5 min to remove cells.

Drop size was observed 1 min later with the aid of a

magnifying glass; a result was considered positive for

biosurfactant production when the drop diameter was at

least 1 mm larger than that produced by sterilized standard

medium (negative control).

Emulsification activity assay and surface tension

measurement

Isolates testing positive in the drop-collapse test were

also evaluated for emulsion-forming and -stabilizing

capacity, according to the method proposed by Das et al.

[21]; the ST of the cell-free supernatant was determined

[51].

After growing in standard for 7 days in an orbital shaker

at 160 rpm and 40�C, cells were removed by centrifugation

at 12,000 9 g for 5 min at room temperature. Two milli-

liters of the cell-free supernatant was mixed with 2 ml

kerosene in a test tube (100 mm 9 15 mm). This mixture

was shaken for 2 min and then left to stand. Relative

emulsion volume (EV, %) and emulsion stability (ES, %)

were measured in intervals up to 48 h using the following

equations [21]:

EV, % ¼ emulsion height ðmmÞ � cross-section area ðmm2Þ
total liquid volume ðmm3Þ � 100

%ES ¼ %EV;% at time t; h

EV; % at 0 h
� 100

Emulsions formed by the isolates were compared to

those formed by a 1% (w/v) solution of the synthetic

surfactant sodium dodecyl sulfate in deionized water, as

proposed by Das et al. [21]. During growing in standard

medium, the ST of the cell-free supernatant (50 ml)

collected at different time intervals after centrifugation

(4,5009g) for 10 min was determined using a KRUSS F6

tensiometer following the Wilhelmy plate measurement

technique at room temperature [51].
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Properties of emulsions

Stabilization of emulsions from halophilic strain was

evaluated over a range of chemical and physical condi-

tions. The extract material of the crude biosurfactant was

dissolved in distilled water, and the pH was adjusted

between 2 and 11 with HCl or KOH. After diesel oil was

added, tubes were vortexed, and the emulsions were mea-

sured after 1 h. The emulsifier was tested with 10, 15, 20,

25 and 35% (w/v) sodium chloride and 0, 10, 25 and 50%

(v/v) ethanol in the aqueous phase. For the evaluation of

stability, emulsions containing 0.14% (w/v) purified bio-

surfactant in distilled water and diesel oil were incubated at

4�C and room temperature for an extended period. Emul-

sions were subjected to three cycles of heating (40�C, 16 h)

and cooling (room temperature, 8 h) [13]. The stability of

the formed emulsions (ES, %) was measured in intervals up

to 48 h [21].

Surfactant isolation and purification

A crude biosurfactant preparation was obtained by centri-

fuging (10,0009g, 10 min, 4�C) the stationary-phase

culture to remove the cells and adjusting the pH of the

spent medium to 2 with 1 N HCl [17]. The acidified liquid

was kept at 4�C overnight, and the precipitate that formed

was collected by centrifugation (17,3009g, 30 min, 4�C).

The precipitate was dissolved in distilled water; the pH was

adjusted to 7.0 with 1 N NaOH, freeze dried and weighed.

The lyophilized material was extracted three times with

chloroform/methanol (2:1, v/v) solvent system. The extract

was dried with the aid of a rotary evaporator under vacuum

[32]. The method used for biosurfactant purification was

modified from the work of Kim et al. [39]. Instead of the

column chromatography steps used by Kim et al. [39],

further purification was achieved by preparative thin-layer

chromatography (TLC) of the extract. The extract was

dissolved in distilled water (250 ll) and spotted onto pre-

parative silica gel TLC plates (Whatman, Clifton, NJ) with

a solvent system of chloroform/methanol (2:1, v/v). The

components were observed under UV light (wavelength of

280 nm). Each fraction was scraped off the plate, dissolved

in 250 ll of water and tested for surface activities using the

qualitative drop-collapse test. Surface-active fractions were

lyophilized.

The extract material was analyzed by TLC [1]. All organic

solvents used were commercially distilled and of the highest

available purity (Sigma-Aldrich). Plates for TLC (Silica gel

60A), obtained from Merck, were washed twice with chlo-

roform/methanol (1:1, v/v) and activated at 120�C before

use. Glucids and peptidic components were separated in

solvent S1 (chloroform–methanol–acetic acid, 80:18:2 by

volume). The peptidic components were visualized by

staining them with ninhydrin (5 mg of ninhydrin in a 50 ml

butanol–50 ml acetone mixture) and heating them at 100�C

for 5 min [34]. Sugar compounds were located by charring at

110�C for 5 min after spraying anthrone reagent [34]. The

solvent system S2 (chloroform–methanol–acetic acid,

97:2:1 by volume) was used for lipid migration. The lipid

components were detected as brown spots on the plate after

spraying with chromosulfuric acid [1].

Results

Characterization of isolates

The enrichment procedure we used selects mainly halo-

bacteria. Colonies from the enrichments that developed on

solid media were about 1 mm in diameter, circular, entire

and pigmented red-orange after 1 week of incubation at

40�C.

The strains had salt growth requirements that were

always above 15% (w/v) salts with an optimal concentra-

tion of 15–25% and were considered extremely halophilic.

These strains were presumptively identified as members of

the family Halobacteriaceae on the basis of phenotypic

characteristics as shown in Table 1. The strains A21 and

D21 were gram negative, motile, catalase and oxidase

positive. On the basis of the phenotypic features tested,

strains A21 and D21 showed phenotypics features resem-

bling members of the genera Halovivax [15] and

Haloarcula, respectively. The phylogenetic position of

strains A21 and D21 are shown in Fig. 1; for the first strain,

designated A21, the partial gene sequence obtained was

400 nucleotides in length (GenBank, AM982815); for the

second strain, designated D21, the partial gene sequence

obtained was 900 nucleotides in length (GenBank,

AM982816). The sequences are comparable to 16S rRNA

of other halophilic archaeon. We have demonstrated that

strain A21 possessed similarities higher than 97% with

those of the genus Halovivax. A similarity (based on a very

small partial sequence) significant for possible species

relatedness ([97%) is found with the two validly described

Halovivax spp., thus indicating that the strain A21

approaches the genus Halovivax to a great extent. Also, the

partial 16S rRNA sequence of strain D21 was determined

(900 bp); the sequence was compared with the published

16S rRNA sequences of representative members of the

Archaea. The sequence showing a significant similarity

(97%) for possible species relatedness is found with several

validly described Haloarcula spp. Seeing the distance

matrix indicated that strain D21 may belong to one of these

species. The following analyses for further species identi-

fication are suggested by the complete 16S rDNA sequence

analysis and DNA: DNA hybridizations.
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Screening and kinetic analysis of biosurfactant

production

Five bacteria strains (A21, B21, C21, D21 and E21) were

selected for their ability to grow at neutral pH and at

3–5.2 M NaCl and were screened for biosurfactant pro-

duction and emulsification activity. They tested positive for

biosurfactants in the drop-collapse test reduced as shown as

Table 2. In this study the drop-collapse technique was only

applied as a qualitative method to detect biosurfactant

production. Motor oil proved better to work with than olive

oil since it caused spreading of the sterilized standard

medium used as negative control and produced plates in

which drop diameter was most readily estimated, an

important factor given this test is based on visual

observation.

According to Bodour and Maier [9], the criterion used

for selecting biosurfactant producers is the ability to reduce

the ST below 40 mN m-1. Also, in Willumsen and Karlson

[59], a criterion cited for emulsion-stabilizing capacity is

the ability to maintain at least 50% of the original EV 24 h

after formation. The two strains tested produced extracel-

lular biosurfactant and produced a strong biosurfactant

capable of generating a stable emulsion over several hours.

However, cell-free supernatant from the five isolates (A21,

B21, C21, D21 and E21) exhibited reduced ST as shown in

Table 2. Biosurfactants were either adhered to, or an

integral part of, the cell surface of isolates that only

reduced the ST in the presence of cells.

The relative emulsion volume (EV, %) was highest

(75.2%) in the culture of the strain D21 followed by the

strain A21 with the EV, % equal at 72.3%. In comparison,

growth and ST decreased during 9 days of these five

halophilics strains. The ST of the standard medium had a

straight decreasing during the stationary growth phase

(shown in Fig. 2a, b). All of the strains tested show the

same kinetics of growth; we can see clearly that the pro-

duction of biosurfactant takes place during the lag phase.

The shapes of the curves are explained by a maximum

production of the biosurfactants during this phase of the

growth. They act as a primary metabolite. However, it is

clear that strains D21 and A21 exhibited the highest surface

activity with the lowest ST of 26.20 and 28.40 mN m-1,

respectively.

We saw the behavior of the strains A21 and D21 in

the absence of a hydrocarbon in the culture medium.

Thus, for the latter studies, the growth media was

modified containing diesel oil (5% v/v) as the sole car-

bon source. The kinetics of growth was observed and

shown in Fig. 3a, b. We note that the pH remains

practically unchanged during the fermentation time of

strains A21 and D21. The lower surface activity is marked

Table 1 Characteristics that distinguish strain A21 and strain D21 from other related haloarchaeal genera: Halovivax and Haloarcula

Characteristics Strain A21 Halovivax Strain D21 Haloarcula

Morphology Coccus/pleomorphic Rod/pleomorphic rod Coccus/pleomorphic Pleomorphic rod

Gram - - - -

Pigmentation Pink-orange Pale-pink Pink-red Red

Catalase and oxydase ? ? ? ?

NaCl optimum (M) 2.7 3.4 2.7 2.5–4.3

NaCl range (M) 2.7–4.5 2.5–4.3 2.7–4.5 1.7–5.2

Mg?? optimum (M) 0.8 0.05–0.1 0.5 0.05–0.1

pH Optimum 7–9, opt. 7 6–9, opt. 7–7.5 6–7.5, opt. 7 6.5–7.5

Temperature optimum (�C) 35–40 25–45, opt. 37 35–50 35–53

Nitrite from nitrate - - - ?

Acid from carbohydrate ? V ? ?

Growth on single carbon source ? - ? ?

Indole from tryptophan ? - ? V

Hydrolysis of:

Starch ? - ? V

Gelatin ? ? ? V

Casein ? ? ? -

Tween 80 ? ? ? V

Lysis in distilled water Cells lyse Cells lyse Cells lyse Cells lyse

Susceptibility to penicillin G (10 U) - ? - ?

Data from Castillo et al. [15] and this study

? positive, - negative, V variable

J Ind Microbiol Biotechnol (2009) 36:727–738 731

123



for the strain D21. ST is the force required to break the

surface between two immiscible phases. However, we note

that the ST in the 1st days of fermentation is quite high, but

at the end of the 3rd day, we see a decline in values until

they reach 28 and 34 mN m-1 for the two bacterial strains

A21 and D21, respectively. As for the pH of the culture

medium, it remained stable and stationary all along

microbial growth. This result allows us to say that there is a
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Fig. 1 Phylogenetic dendrogram of halobacteria based on 16S rRNA

gene sequence data, indicating the position of the strains A21 and

D21. The tree was constructed using the neighbor-joining method.

The sequence data used for the following strains were obtained from

the sequences collected from the international nucleotide sequence

library EMBL. Methanospirillum hungatei was used as outgroup.

Alignment was pairwise calculated using an open gap penalty of

100% and a unit gap penalty of 0%. Similarity matrix was created by

homology calculation with a gap penalty of 0% and after discarding

unknown bases
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production of biomolecules with surface activity as bio-

surfactants that cause the reduction of the ST of the

medium. In addition and according to these results, it is

clear that these extremely halophilic bacteria grow on a

medium containing hydrocarbons in a similar way to that in

the presence of the starch. The influence of NaCl concen-

tration on the kinetics of the production of biosurfactant was

tested over the range of 0–5 M (Fig. 4a, b). The kinetics of

biosurfactant included the variation of emulsion stability

and ST decreases by cultures of the strains A21 and D21.

There was no production in the absence of added NaCl. The

production increased with salt concentration up to 2 M

NaCl, and then decreased again at 5 M NaCl. Thus, the

strains A21 and D21 exhibited the highest surface activity

with the lowest ST of 27.4 and 25.90 mN m-1, respec-

tively. This result clearly indicates that production of

biosurfactants is salt dependent.

Chromatographic behavior

Strain A21 presented lipids with a regular mobility in the

solvent S2 (RF, 0.34), and the lipids gave a negative test on

TLC plates for strain D21. Protein and sugar gave a posi-

tive test on TLC plates for both of strains A21 and D21,

indicating that there is a production of the extracellular

compounds by the strains A21 and D21. According to these

Table 2 Surface tension of culture media without cells and relative

volume of emulsions formed between cell culture media and diesel oil

after growth of bacteria strains in standard medium for 7 days at 40�C

and 200 rpm

Strains Drop-collapse Surface

tension

Relative emulsion

volume (%) after 48 h

Cell-free supernatant

A21 ???? 28.4 ± 1.2 72.3 ± 0.6

B21 ??? 36.4 ± 0.6 65.8 ± 0.7

C21 ??? 35.5 ± 1.4 66.9 ± 0.5

D21 ???? 26.2 ± 0.8 75.2 ± 0.4

E21 ??? 36.9 ± 0.6 66.3 ± 0.6

1% SDS ???? 42.8 ± 0.6 23.5 ± 0.8

Surface tension was expressed as mN m-1 using standard medium as

control (73.9 mN m-1); values reported are average of 6–12 repli-

cates. %EV was as percentage
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Fig. 2 Growth (a) and surface tension (b) decrease by cultures of five

halophilic strains (A21 asterisk, B21 open diamond, C21 open
triangle, D21 open circle and E21 open square). Each culture of these

strains was grown at 40�C and 200 rpm in standard medium with

soluble starch (BDH) as a carbon source. Values are averages for

three cultures
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Fig. 3 Kinetic growth (filled diamond), emulsion stability (filled
triangle), pH (asterisk) and ST(multiplication sign) decreases by

cultures of strain A21 (a) and strain D21 (b). Each culture of these

strains was grown at 40�C and 200 rpm in medium with diesel oil

(5% v/v) as a carbon source. Values are averages for three cultures
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results, the biosurfactants produced by the halophilic

bacteria D21 could be glycoproteins, whereas for the

halophilic strain A21, the components of the biosurfactant

were found to contain sugar, protein and lipid. This could

thus be a peptidoglycolipid, such as glycoprotein, glyco-

lipid or lipopeptide.

Properties of the emulsions

Strains A21 and D21 were selected to study the stability of

the emulsions formed under various conditions. The

emulsions were tested for stabilization under a range of

chemical and physical conditions that might be encoun-

tered in various applications. According to Cameron et al.

[13], it clearly facilitates the detection of the possible

detrimental effects of pH, sodium chloride or ethanol on

emulsification. Emulsions from both strains, A21 and D21,

were made with 0.05% (w/v) purified crude biosurfactant.

The dilution by distilled water indicates that it does not

have an effect on the emulsion produced. The emulsion-

stabilizing capacity of the two bacterial strains A21 and

D21 is kept constant with a value of 60.2 and 58.82%,

respectively. Figure 5 shows that the pH of the aqueous

phase had little effect on the amount of diesel oil phase

emulsified between pH 2 and 11. In the basic environ-

ments, it is clear that the strain A21 has an emulsion-

stabilizing capacity that is more important than those in the

neutral and acidic environments, with an optimum at pH 9.

After 48 h at room temperature, the relative emulsion

stability is equal to 100%. The strain D21 shows the same

result except that its highest emulsion-stabilizing capacity

appears with neutral pH. The effect of the change in pH does

not appear to affect the emulsions formed. These results

demonstrate once again that it is possible to use these, fer-

menting in sites that are polluted, for example, by oil,

whatever the pH values of the site where clean up is needed.

As shown in Fig. 6, in the presence of 10–35% (w/v) sodium

chloride in the aqueous phase, stable and strong emulsions

were formed of both strains A21 and D21. According to the

results obtained, strains A21 and D21 showed that the rela-

tive emulsion stability formed increases with increasing

concentrations of ethanol until it reaches a maximum at a

concentration of 25% (ES % = 93%). However, a higher

concentration in ethanol (50%) caused a decrease in the

relative emulsion stability (ES % = 88%). Figure 7 illustrates

that the presence of high concentrations of ethanol has a

positive effect on the stability of the emulsion. The cycle of

temperature (40, 25, 4, -4�C) has no effect on the stability of

emulsions formed. But the temperature cycle in reverse (-4,

4, 25 to 40�C) causes the dispersion of the emulsion, so this

physical treatment provokes reduced emulsion stability.
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Fig. 4 Effect of NaCl concentrations on the kinetic of biosurfactant:

variation of emulsion stability (filled diamond) and surface tension

(dot filled box) decreases by cultures of strain A21 (a) and the strain

D21 (b). Each culture of these strains was grown at 40�C and 200 rpm

in standard medium. Values are averages for three cultures
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Emulsions formed around the strains A21 and D21 were not

disrupted by three cycles of heating to 40�C (16 h) and

then cooling to 23�C (8 h). During storage at 4�C, the

relative emulsion stability did not change over a 4-month

period.

Discussion

This study broadens the field of biosurfactant-producing

microorganisms. Given the potential of biosurfactants to be

used as tools in different fields, our work suggests that it is

interesting to search for biosurfactant in an extremely halo-

philic archaeon. Certainly there is current interest in the

production of other biosurfactants from halophiles, both

archaeal and eubacterial, given the possibility that biosur-

factants adapted to high salt concentrations and temperatures

will have improved stabilities when used in organic solvents.

In this study, the screening for biosurfactant production

under hypersaline conditions is described for archaeal

strains. Five Halobacteria strains were used throughout this

work, two of which, A21 and D21, are identified as better

biosurfactant producers using the qualitative drop-collapse

test and the emulsification activity assay. They were selected

for identification by phenotypic, biochemical characteristics

and by partial 16S rRNA gene sequencing. We demonstrated

that they are able to grow in the presence of 25% NaCl.

Analyses of partial 16S rRNA gene sequences of the two

strains suggested that they were extremes halophiles

belonging to genera of the family Halobacteriaceae; the

strain A21 is very close to the genus Halovivax, and the strain

D21 could be the genus Haloarcula. Also, halophiles have

usually been overlooked in most screening programs for

exopolymers. Recently, it has been found that Haloferax

mediterranei produces a highly sulfated and acidic hetero-

polysaccharide (up to 3 g l-1), which contains mannose as a

major component [3, 4]. Such a polymer combines excellent

rheological properties with a remarkable resistance to

extremes of salinity, temperature and pH [3]. Sulfated EPS is

also notable for its role in inhibiting viral penetration into

cells [33]. Haloferax mediterranei and Haloarcula japonica

both produce sulfated EPS [6, 33]. The partial character-

ization of biosurfactants produced by strains A21 and D21 is

the primary focus of the study. According to the results

obtained, the biosurfactants produced by the halophilic

bacteria D21 could be glycoproteins, whereas for the halo-

philic strain A21, the components of the biosurfactants were

found to contain sugar, protein and lipid. This thus could be a

peptidoglycolipid, such as glycoprotein, glycolipid or

lipopeptide. It is currently known that the type of

biosurfactant made is dictated by the producing

microorganism. One major class of biosurfactants is the

glycolipids, which includes rhamnolipids, trehalose lipids

and sophorose lipids. Rhamnolipids are produced only by

P. aeruginosa [10]; trehalose lipids are produced only by a

number of closely related genera, including Rhodococcus,

Nocardia, Corynebacterium, Tsukamurella, Gordonia,

Mycobacterium and Arthrobacter [10] and other glyco-

lipids produced by Streptococcus thermophilus [55].

Polymeric biosurfactant producers have been isolated

from Eubacteria, Eukaryotes and Archaea [10]. Moreover,

the halobacterial membrane lipids exhibit many relevant

properties; the ether-linked lipids possess very low melt-

ing points, are resistant to degradation by acids, alkalis

and heat, and have an emulsifying ability, with an ade-

quate hydrophile-lipophile balance, which produces good

water-in oil emulsions [52]. An interesting potential
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application of the unique ether-linked lipids of the halo-

bacteria is their use in novel types of liposomes, which

have great value in the cosmetic industry. Such liposomes

would be more resistant to biodegradation than those used

at the moment and thus would have a better shelf life,

since halobacterial lipids are relatively resistant to the

action of other bacteria [27]. Salt concentration also

affected biosurfactant production depending on its effect

on cellular activity. Some biosurfactant products, how-

ever, were not affected by salt concentrations up to 10%

(w/v), although slight reductions in the critical micelle

concentration were detected [48]. Furthermore, growth

was not inhibited by the presence of crude oil. The bio-

surfactant produced was not affected by the temperatures,

pHs or NaCl. In this study, we observed that strains A21

and D21 were capable of reducing the surface tension of

the medium up to 28 mN m-1 or more. Therefore, our

own values are in agreement with values obtained by

other researchers [31, 44], which are around 19–28

mN m-1. The biosurfactant production is directly pro-

portional to cell growth. When cell growth increases, ST

decreases. The ST became constant and increased slightly

during the late stationary phase. Similar findings were

also obtained for other surfactant-producing eubacteria

[5, 18]. Cell-free supernatant from all halophilics strains

tested in this study exhibited reduced ST. Biosurfactants

were either adhered to, or an integral part of, the cell

surface of isolates that only reduced the ST in the pres-

ence of cells [16]. Isolates that liberate biosurfactants into

the culture medium are interesting from an industrial

point of view, because the product recovery process can

be simplified [12, 26, 41]. The biopolymers secreted by

halophiles are intrinsically highly stable and may have

applications as mobility controllers and emulsifying

agents in the oil industry [3, 5]. There are very few

reports on hydrocarbon biodegradation in hypersaline

environments. Ward and Brock [58] have shown an

inverse relationship between hydrocarbon biodegradation

and salinity. Bertrand et al. [8] reported the isolation of

halophilic hydrocarbonoclastic bacteria, showing that

hydrocarbon metabolism may occur in hypersaline con-

ditions. In our studies, starch was a better carbon source

than the other carbohydrates for screening biosurfactant-

producing strains. Studies showed that few halophilic

Archaea are able to grow in aromatic compounds, but the

production of biosurfactants was never demonstrated [19].

Haloferax volcanii D1227, a halophilic archaeon isolated

from oil-brine-contaminated soil, was shown to degrade

mono-aromatic compounds, such as benzoate, cinnamate

and 3-phenylpropionate [24]. More recently, Haloarcula sp.

D1 was shown to metabolize p-hydroxybenzoic acid [25].

Furthermore, the potential application of Halobacteria

(halophilic Archaea) for bioremediation of recalcitrant

compounds in highly saline wastewaters for the accelerated

remediation of hydrocarbon-polluted saline environments

has been considered [7, 42]. The biological treatment of high

saline effluents, such as the waters produced from the oil

industry, has been studied [2]. Both selected strains are being

identified and quantification and physicochemical charac-

terization of their surface-active metabolites completed as

the basis for optimization studies aimed at application in

bioremediation.

Conclusion

Five Halobacteria strains were used throughout this work for

research on the production of biosurfactants under hypersa-

line conditions. Two of the strains, A21 and D21, are

identified as better biosurfactant producers using the quali-

tative drop-collapse test and the emulsification activity

assay. The strains have Mg2? and salt growth requirements

that are always above 15% (w/v) salts with an optimal con-

centration of 15–25%. Analyses of partial 16S rRNA gene

sequences of the two strains suggested that they were

halophilic Archaea belonging to genera of the family Halo-

bacteriaceae. Strain D21 is very close to the genus

Haloarcula, and strain A21 approaches the genus Halovivax.

These two strains showed the highest surface activity with

the lowest ST of 26.20 and 28.40 mN m-1, respectively.

Also, these extremely halophilic bacteria grow on a medium

containing hydrocarbons in a similar way as in the presence

of the starch. The biochemical nature of the biosurfactants

produced by these halobacteria thus could be a peptidogly-

colipid, such as glycoprotein, glycolipid or lipopeptide. The

high stability of the emulsions formed under various condi-

tions may be useful in various industries. Thus, there is an

increasing interest in the possible use of these biosurfactants

in mobilizing heavy crude oil, oil pollution control, cleaning

oil sludge from oil storage facilities, oil/sand bioremediation

and microbially enhancing oil recovery.
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